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Abstract. We study the properties of thermal radiation emitted by a thin dielectric slab, employing the
framework of macroscopic fluctuational electrodynamics. Particular emphasis is given to the analytical
construction of the required dyadic Green’s functions. Based on these, general expressions are derived
for both the system’s Poynting vector, describing the intensity of propagating radiation, and its energy
density, containing contributions from non-propagating modes which dominate the near-field regime. An
extensive discussion is then given for thin metal films. It is shown that the radiative intensity is maximized
for a certain film thickness, due to Fabry-Perot-like multiple reflections inside the film. The dependence
of the near-field energy density on the distance from the film’s surface is governed by an interplay of
several length scales, and characterized by different exponents in different regimes. In particular, this
energy density remains finite even for arbitrarily thin films. This unexpected feature is associated with the
film’s low-frequency surface plasmon polariton. Our results also serve as reference for current near-field
experiments which search for deviations from the macroscopic approach.

PACS. 44.40.+a Thermal radiation – 78.66.-w Optical properties of specific thin films – 05.40.-a
Fluctuation phenomena, random processes, noise, and Brownian motion – 41.20.Jb Electromagnetic wave
propagation; radiowave propagation

1 Introduction

A piece of nonmagnetic, linear and isotropic dielectric ma-
terial with frequency-dependent permittivity ε(ω) kept at
some finite temperature T generates and emits an elec-
tromagnetic field, which manifests itself as heat radiation,
resulting from thermal and quantum mechanical fluctua-
tions. Besides the thermal far field, near-field phenomena
associated with nonpropagating modes have recently at-
tracted increasing attention [1]. Possibly important effects
have been revealed, such as the emergence of both tempo-
ral and spatial coherence in the near field of planar ther-
mal sources due to surface waves [2–4]. In addition, the
influence of these surface waves on radiative heat transfer
and dispersion forces at the subwavelength scale has been
investigated [1]. In such studies, one usually considers a
simple half-space geometry, or two half-spaces separated
by a narrow vacuum gap.

The characteristic length scale for absorption of heat
radiation by the material is the skin depth

dskin =
1

k0 Im(
√

εr)
, (1)

evaluated at the dominant thermal frequency ωth =
2.821 kBT/�. We use the notation k0 = ω/c, where c is
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the velocity of light in vacuum; εr(ω) = ε(ω)/ε0 is the rel-
ative permittivity, with ε0 denoting the permittivity of the
vacuum. Thermal radiation generated inside the material
can reach its surface only if it originates from its outer-
most layer with thickness on the order of dskin. Hence,
if the linear dimensions of a given dielectric are signifi-
cantly larger than the skin depth, the emitted radiation
preserves no information about the material’s geometry.
In that case, radiating and non-radiating components of
the thermal electromagnetic field equal those emitted by
a dielectric half-space [5,6].

In this paper we investigate a seminal example which
shows that measurable effects occur when the above two
length scales become comparable, so that the half-space
model becomes inadequate. We consider an infinite, pla-
nar dielectric slab and study the dependence of both its
thermal far and near field on its thickness d. When d is
large compared to dskin, the propagating radiation emitted
by the slab is described by the Planck-Kirchhoff radiation
law [5]. However, when d is reduced below dskin, two com-
peting trends arise: on the one hand, multiple reflections
of radiation inside the slab lead to a Fabry-Perot-like en-
hancement of the field; on the other, the radiating source
volume is diminished. We work out the consequences of
this competition and show that, in particular, the near-
field energy density close to the surface of a metal film
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can remain finite even when the thickness of that film be-
comes arbitrarily small, as a result of the emergence of a
low-frequency surface plasmon polariton.

We proceed as follows: in Section 2 we briefly collect
the required elements of fluctuational macroscopic elec-
trodynamics [7], and outline in Section 3 the construction
of the classical dyadic Green’s functions for the dielectric
slab; these turn out to be significantly more complicated
than the more often considered ones for a half-space, or
for a vacuum gap between two half-spaces [8]. Although
properties of propagating thermal radiation may also be
obtained by more direct means [9], and numerical codes for
investigating thermal radiation of layered structures do ex-
ist [10], the detailed analytical discussion of these Green’s
functions is of its own intrinsic value. Green’s functions
for layered media appear in a variety of contexts, such as
van der Waals forces in multilayer systems [11,12], mag-
netic noise in conducting slabs [13], light scattering and
control of spontaneous emission in planar cavities [14,15],
or thermal spin flips in atom chips [16], to name but a
few. Unfortunately, the algebra involved in writing down
such Green’s functions, though not difficult in principle, is
vexatingly cumbersome. Here we resort to the formalism
outlined in reference [17], based on the systematic use of
vector wave functions [18], which combines versatility with
transparency, and which allows us to treat both far-field
and near-field effects on equal footing. With the help of
the Green’s functions we then derive in Section 4 general
expressions for both the intensity of the slab’s thermal
radiation field and its energy density, deferring tedious
mathematical details to the Appendix A. Section 5 con-
tains an extensive discussion of these results.

For the sake of definiteness we concentrate on dielectric
slabs effectuating a coupling between plasma-like electron
motion and the photon field [19], such as metals. Within
the Drude approach, their permittivity is given by

ε(ω) = ε0

[
1 +

i
ω

ω2
pτ

(1 − iωτ)

]
, (2)

where ωp denotes the plasma frequency, and τ the relax-
ation time [20]. Since the dominant thermal frequency
amounts to ωth ≈ 1.1 × 1014 s−1 for T = 300 K, and
since typical relaxation times for metals are on the order
of 10−14 s, one can satisfy the inequality ωτ � 1 in the
infrared, thus arriving at the Hagen-Rubens approxima-
tion [21]

εr(ω) = 1 − (ωpτ)2 + i
ω2

pτ

ω
(3)

for the relative permittivity. For metals with compar-
atively short relaxation time, such as Bismuth (τBi ≈
2.3 × 10−16 s at T = 273 K), this approximation is quite
good indeed. However, a Drude metallic state can also be
achieved with conducting polymers; for instance, hexa-
fluorophosphate doped polypyrrole [PPy(PF6)] yields a
plasma frequency in the far infrared at about 2×1013 s−1,
combined with an anomalously long scattering time quan-
tified as 3 × 10−11 s in reference [22]. Hence, while we
use this approximation (3) for deriving various analyti-
cal estimates, we rely on the full Drude permittivity (2)

in our numerical calculations. Besides Bismuth, for which
ωpτ ≈ 4.8 at room temperature, we will also consider more
typical metals, for which ωpτ is two orders of magnitude
larger.

We consider in Section 5.2 the radiative intensity emit-
ted by thin metal films, and demonstrate that the op-
posing trends hinted at above result in an optimum film
thickness which maximizes that intensity. We then study
in Section 5.3 the “evanescent” near-field energy density,
and establish a somewhat counterintuitive result: while
the contribution of the TE modes to that density van-
ishes when the film thickness goes to zero, that of the TM
modes does not, but remains finite and becomes universal,
at least within the scope of the simple Drude approach. Fi-
nally, we briefly spell out some experimental ramifications
in Section 6.

2 Elements of fluctuational electrodynamics

As is customary, we consider the macroscopic electric and
magnetic fields inside the dielectric material, E(r, t) and
H(r, t), obtained by averaging the microscopic fields over
some appropriate volume [23], so that their small-scale,
“atomic” fluctuations are smoothed out. Since these fields
are described by real numbers, one has

E(r, t) =
∫ +∞

−∞

dω

2π
E(r, ω) e−iωt

=
∫ +∞

0

dω

2π
E(r, ω) e−iωt + c.c., (4)

where c.c. denotes the complex conjugate of the preceding
term. A corresponding identity holds for H(r, t). Hence, it
suffices to restrict the temporal Fourier transforms E(r, ω)
and H(r, ω) to positive frequencies ω.

Following Rytov and co-workers [7], we describe
the connection between the electromagnetic field and
its sources by augmenting the dynamical macroscopic
Maxwell equations by fluctuating current fields. For non-
magnetic materials, characterized by the permeability µ0

of the vacuum, only an “electric” current is required, the
frequency components j(r, ω) of which are regarded as in-
dependent stochastic variables. The resulting equations

∇× E(r, ω) = iωµ0H(r, ω) (5)
∇× H(r, ω) = −iωε(ω)E(r, ω) + j(r, ω) (6)

then adopt the status of Langevin-type stochastic equa-
tions, with j(r, ω) playing the role of a stochastic force. As
in the theory of Brownian motion, the correlation func-
tions of these “forces” then are of central importance. As
a consequence of the fluctuation-dissipation theorem, they
acquire the forms [24,25]

〈 jα(r, ω) jβ(r′, ω′) 〉 = 0

〈 jα(r, ω) jβ(r′, ω′) 〉 = 4πω E(ω, β) ε′′(ω)
×δαβ δ(r − r′) δ(ω − ω′)

〈 jα(r, ω) jβ(r′, ω′) 〉 = 0, (7)
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where angular brackets indicate an ensemble average,
overbars denote complex conjugation, Greek letters spec-
ify vector components, and

E(ω, β) =
�ω

eβ�ω − 1
(8)

is the mean thermal energy of a quantum mechanical har-
monic oscillator with frequency ω, omitting the vacuum
contribution. As usual, β = (kBT )−1 is the inverse tem-
perature variable; ε′′(ω) is the imaginary part of the ma-
terial’s permittivity ε(ω) = ε′(ω) + iε′′(ω).

Since the stochastic Maxwell equations are linear,
there exists a linear relationship between the fluctuating
sources and the generated fields, which we write as

E(r, ω) = iωµ0

∫
d3r′�E(r, r′, ω) · j(r′, ω) , (9)

H(r, ω) = iωµ0

∫
d3r′�H(r, r′, ω) · j(r′, ω). (10)

The dyadic kernels �E(r, r′, ω) and �H(r, r′, ω) are re-
ferred to as the classical electric and magnetic Green’s
function, respectively. Once these kernels are known for
the given geometry, the correlation functions (7) allow one
to evaluate bilinear expressions of the fields such as

〈Eα(r, t)Hβ(r, t)〉 =
µ2

0

π

∫ ∞

0

dω ω3E(ω, β)ε′′(ω)

×
∫

d3r′
(
�

E ·�H
t
)

αβ
+ c.c., (11)

which enter into the definition of basic observables, such
as the Poynting vector of the thermal radiation emitted
by the material, or its energy density. In the following sec-
tion, we outline the construction of such Green’s functions
for a dielectric layer of finite thickness. Readers not inter-
ested in the mathematical details of this construction can
proceed to Section 4.

3 Construction of dyadic Green’s functions

The electric dyadic Green’s function obeys the inhomoge-
neous vector wave equation [17]

∇×∇×�
E(r, r′, ω) − k2

�
E(r, r′, ω) = �δ(r − r′), (12)

where

k2 =
ω2

c2
εr(ω) (13)

is the square of the wave number inside a material with rel-
ative permittivity εr(ω) = ε(ω)/ε0. Besides, the Green’s
function also has to satisfy the proper boundary condi-
tions for the respective geometry. For nonmagnetic ma-
terials, as considered here, the magnetic Green’s function
is then easily obtained from the electric one through the
relation

�
H =

1
iωµ0

∇×�
E . (14)

For constructing Green’s functions, one starts from solu-
tions V to the homogeneous vector wave equation

∇×∇× V − k2V = 0. (15)

Assuming cylindrical symmetry in planes orthogonal to
the z-axis, the appropriate solutions are provided by the
vector wave functions [17]

M±nλ(h) =
(
∓ n

Jn(λρ)
ρ

{
sin
cos

}
(nϕ)eρ

−∂Jn(λρ)
∂ρ

{
cos
sin

}
(nϕ)eϕ

)
eihz (16)

N±nλ(h) =
(

ih
k

∂Jn(λρ)
∂ρ

{
cos
sin

}
(nϕ)eρ

∓ ihn

k

Jn(λρ)
ρ

{
sin
cos

}
(nϕ)eϕ

+
λ2

k
Jn(λρ)

{
cos
sin

}
(nϕ)ez

)
eihz . (17)

Here, Jn(λρ) denotes an ordinary Bessel function of or-
der n; the upper (lower) trigonometric function goes
with the respective upper (lower) sign. The integer n =
0, 1, 2, 3, . . . is a discrete mode index, whereas the real,
wave number-like index 0 ≤ λ < ∞ is continuous. This
wave-number index refers to propagation orthogonal to
the z-axis, and determines the wave number h for propa-
gation in z-direction through the relation

λ2 + h2 = k2; (18)

observe that, in contrast to λ, this wave number h gen-
erally is complex. It appears as the argument of the
above vector functions, whereas the cylindrical coordi-
nates (ρ, ϕ, z) of r are suppressed. The functions M±nλ(h)
are associated with (σ-polarized) TE modes, the functions
N±nλ(h) with (π-polarized) TM modes. Besides solving
the homogeneous wave equation (15), these functions (16)
and (17) also satisfy the useful identities

∇× M±nλ(h) = kN±nλ(h)
∇× N±nλ(h) = kM±nλ(h). (19)

It should be pointed out that, besides the vector functions
of the M- and N-type, there also exists a third type de-
noted L. These functions obey ∇ × L = 0 and are not
needed in the present macroscopic approach [16,18].

We now consider the geometry depicted in Figure 1:
the layer between the infinite planes z = 0 and z = −d is
filled by a dielectric with permittivity ε2 = ε2(ω); in this
layer we have stochastic source currents generating the
electromagnetic field. For later convenience, we do not yet
assume at this point that the layer is embedded in a vac-
uum, but rather that the region z < −d be occupied by an-
other dielectric with permittivity ε1, while the half-space
z > 0 be characterized by still another permittivity ε3.
This will allow us to apply the results obtained here to
bulk materials covered by thin coatings [26,27].
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Fig. 1. Slab geometry considered in this work. The region
−d ≤ z ≤ 0 is occupied by a dielectric with permittivity ε2.
The permittivities for z < −d and z > 0 are given by ε1 and ε3,
respectively. A source at z = z′ within the slab emits radiation
with unit amplitude in both directions. One also has to account
for waves reflected and transmitted at both interfaces, with
amplitudes as indicated, both for TE and TM modes.

If there were no boundary conditions to respect at the
interfaces, but the layer −d ≤ z ≤ 0 were extended to
fill the entire three-dimensional space, the dyadic electric
Green’s function with boundary conditions at z = ±∞
specifying “outgoing” waves could directly be adapted
from the literature [17]: for z > z′, one then has

�0(r, r′, ω) =
i

4π

×
∫ ∞

0

dλ

∞∑
n=0

2 − δn,0

λh2

{
M±nλ(h2) ⊗ M′

±nλ(−h2)

+ N±nλ(h2) ⊗ N′
±nλ(−h2)

}
, (20)

whereas the signs of the arguments ±h2 of all four vector
functions have to be reversed when z < z′. Here and in
the following, an unprimed vector function M or N always
carries the coordinates of the observation point r, whereas
a primed function M′ or N′ refers to the source point
r′. The symbol ⊗ indicates a dyadic (exterior) product.
Finally, M±nλ(h2)⊗M′

±nλ(−h2) is a shorthand notation
for M+nλ(h2)⊗M′

+nλ(−h2) + M−nλ(h2)⊗M′
−nλ(−h2).

For the slab geometry specified in Figure 1, this func-
tion �0(r, r′, ω) has to be modified such that, apart from
outgoing boundary conditions at z = ±∞, also the bound-
ary conditions at the two interfaces can be implemented.
To this end, we divide the space into four zones: As-
suming the source to be located within the slab, so that
−d < z′ < 0, we refer to the region −∞ < z < −d as
zone I. Then −d ≤ z < z′ is zone II , while the remaining
piece z′ < z ≤ 0 of the slab becomes zone III , and the
positive half space z > 0 is dubbed zone IV . Since the
tangential component of the electric field is continuous at

the interfaces, one requires

ez ×�
E
I/III = ez ×�

E
II/IV ; (21)

continuity of the magnetic field’s tangential components
leads to the further boundary conditions

ez ×∇×�
E
I/III = ez ×∇×�

E
II/IV . (22)

These requirements can be met with the following, piece-
wise ansatz: in zone I one has only radiation transmitted
through the left interface, directed towards z = −∞. Spec-
ifying still unknown transmission amplitudes T l

TE and
T l

TM for the TE and TM modes, respectively, we therefore
write the electric Green’s function �E

I (r, r′, ω) with r in
this zone in the form

�
E
I =

i
4π

∫ ∞

0

dλ

∞∑
n=0

2 − δn,0

λh2

·
{

T l
TEM±nλ(−h1) ⊗ M′

±nλ(h2)

+ T l
TMN±nλ(−h1) ⊗ N′

±nλ(h2)
}

. (23)

In zone II there is leftward-directed radiation (with unit
amplitude) emitted by the source, but also rightward-
moving radiation reflected (with amplitudes Rl

TE and
Rl

TM ) from the left interface, together with further,
leftward-moving radiation reflected (with amplitudes Rr

TE
and Rr

TM ) from the right interface:

�
E
II =

i
4π

∫ ∞

0

dλ

∞∑
n=0

2 − δn,0

λh2

·
{(

M±nλ(−h2) + Rl
TEM±nλ(h2)

)
⊗ M′

±nλ(h2)

+ Rr
TEM±nλ(−h2) ⊗ M′

±nλ(−h2)

+
(
N±nλ(−h2) + Rl

TMN±nλ(h2)
)
⊗ N′

±nλ(h2)

+ Rr
TMN±nλ(−h2) ⊗ N′

±nλ(−h2)
}

. (24)

In zone III one has, mutatis mutandis , the same dynamics
as in zone II, giving

�
E
III =

i
4π

∫ ∞

0

dλ

∞∑
n=0

2 − δn,0

λh2

·
{(

M±nλ(h2)+Rr
TEM±nλ(−h2)

)
⊗M′

±nλ(−h2)

+ Rl
TEM±nλ(h2) ⊗ M′

±nλ(h2)

+
(
N±nλ(h2) + Rr

TMN±nλ(−h2)
)
⊗N′

±nλ(−h2)

+ Rl
TMN±nλ(h2) ⊗ N′

±nλ(h2)
}

, (25)
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whereas zone IV provides a mirror image of zone I:

�
E
IV =

i
4π

∫ ∞

0

dλ

∞∑
n=0

2 − δn,0

λh2

·
{

T r
TEM±nλ(h3) ⊗ M′

±nλ(−h2)

+T r
TMN±nλ(h3) ⊗ N′

±nλ(−h2)
}

. (26)

Of course, the above ansatz is characterized in mathe-
matical terms by stating that a suitable solution of the
homogeneous vector wave equation (15) has been added
to the particular solution (20) of the inhomogeneous equa-
tion (12).

We are now left with eight unknowns T r,l
TE,TM and

Rr,l
TM,TE , which match the number of boundary conditions

provided by equations (21) and (22), since these apply
independently to both the TE and the TM modes. We
concentrate on the radiation field in zone IV , and there-
fore evaluate the transmission coefficients T r

TE and T r
TM .

This procedure is quite cumbersome, but elementary, so
we immediately proceed to the result: the contribution of
the TE modes to the radiation emitted by the slab into
zone IV is determined by

T r
TEM(h3) ⊗ M′(−h2) =

2h2

D⊥

[
(h1 + h2)e−ih2dM(h3) ⊗ M′(−h2)

− (h1 − h2)eih2dM(h3) ⊗ M′(h2)
]
, (27)

while that of the TM modes follows from

T r
TMN(h3) ⊗ N′(−h2) =

2h2k2

D‖k3

[(
h1

ε2

ε1
+ h2

)
e−ih2dN(h3) ⊗ N′(−h2)

−
(

h1
ε2

ε1
− h2

)
eih2dN(h3) ⊗ N′(h2)

]
. (28)

For ease of notation, we henceforth omit the mode indices
“±nλ” from the vector wave functions, and use the deter-
minants

D⊥ = (h1 + h2)(h3 + h2)e−ih2d − (h1 − h2)(h3 − h2)eih2d

(29)
and

D‖ =
(

h1
ε2

ε1
+ h2

) (
h3

ε2

ε3
+ h2

)
e−ih2d

−
(

h1
ε2

ε1
− h2

) (
h3

ε2

ε3
− h2

)
eih2d. (30)

Inserting these results (27) and (28) into the electric
Green’s function (26), the radiation field existing in the
half-space z > 0 is completely specified, since the magnetic
Green’s function for that zone is immediately obtained
from equation (14), keeping in mind the relations (19).

4 Thermal radiation emitted by a dielectric
layer

As an application of the above formalism we evaluate the
intensity of thermal radiation emitted by the slab into
the half-space z > 0, as given by the z-component of the
Poynting vector,

〈Sz(ρ, ϕ, z)〉 = εzβγ〈Eβ(r, t)Hγ(r, t)〉
= εzβγ

µ2
0

π

∫ ∞

0

dω ω3E(ω, β)ε′′(ω)

×
∫

d3r′
(
�

E
IV ·�H

IV

t)
βγ

+ c.c., (31)

where εzβγ denotes the Levi-Civita tensor. The calcula-
tion is not trivial and involves several algebraic manipula-
tions also encountered when computing the field’s energy
density, so we collect the main steps in Appendix A. Be-
cause of translational symmetry in planes parallel to the
interfaces, the result does not depend on the cylindrical
coordinates ρ, ϕ:

〈Sz(z)〉 =
∫ ∞

0

dω
E(ω, β)
(2π)2

∫ ∞

0

dλλe−2h′′
3 z

(
T⊥ + T‖

)
,

(32)
where h′′

3 is the imaginary part of the wave number h3 =
h′

3 + ih′′
3 , and the dimensionless transmission coefficients

T⊥ and T‖ are given by

T⊥ =
4Re(h3)
|D⊥|2

[
Re(h2)A⊥ + Im(h2)B⊥

]
(33)

T‖ =
4Re(h3εr3)
|D‖|2|εr3|2

[
Re(h2εr2)A‖ + Im(h2εr2)B‖

]
, (34)

employing the relative permittivities εrj = εj(ω)/ε0, to-
gether with the auxiliary, real quantities

A⊥ = |h1 + h2|2
(
e2h′′

2 d − 1
)

+ |h1 − h2|2
(
1 − e−2h′′

2 d
)

A‖ =
∣∣∣∣h1

ε2

ε1
+ h2

∣∣∣∣
2 (

e2h′′
2 d − 1

)

+
∣∣∣∣h1

ε2

ε1
− h2

∣∣∣∣
2 (

1 − e−2h′′
2 d

)
(35)

and

B⊥ = 2Im
(

(h1 + h2)(h1 − h2)
(
e−2ih′

2d − 1
))

B‖ = 2Im
((

h1
ε2

ε1
+ h2

) (
h1

ε2

ε1
− h2

)(
e−2ih′

2d − 1
))

.

(36)

In the case of thick layers, where h′′
2d → ∞, one has

A⊥
|D⊥|2 → 1

|h3 + h2|2 ,
B⊥

|D⊥|2 → 0,

A‖
|D‖|2 → 1∣∣∣h3

ε2
ε3

+ h2

∣∣∣2
,

B‖
|D‖|2 → 0, (37)
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so that one recovers the well-known coefficients which de-
termine the radiation emitted by a bulk material with
planar surface [2,5–7]:

T⊥ → 4Re(h3)Re(h2)
|h3 + h2|2

T‖ → 4Re(h3εr3)Re(h2εr2)∣∣∣h3
ε2
ε3

+ h2

∣∣∣2 |εr3|2
. (38)

The opposite limiting case of very thin layers, with h′
2d →

0 and h′′
2d → 0, is less obvious. After some tedious algebra,

one finds

T⊥ → 4Re(h3)d ε′′r2 k2
0

|h1 + h3|2

T‖ → 4Re(h3εr3) d ε′′r2∣∣∣h1
ε2
ε1

+ h3
ε2
ε3

∣∣∣2 |εr3|2

(∣∣∣∣h1
ε2

ε1

∣∣∣∣
2

+ λ2

)
, (39)

with k0 = ω/c. If both ε1(ω) = ε0 and ε3(ω) = ε0, so that
the layer is surrounded by vacuum, this gives

T⊥ → h′
0d ε′′r2 k2

0

|h0|2

T‖ → h′
0d ε′′r2

|h0|2|εr2|2
(
|h0|2|εr2|2 + λ2

)
. (40)

Since according to equation (18) one has h′
0 = 0 for evanes-

cent modes with λ ≥ k0, only propagating modes with
λ < k0 contribute to the Poynting vector. It is then a
simple matter to invoke equation (32) for computing the
intensity of thermal radiation emitted by a very thin di-
electric layer into the vacuum:

〈Sz〉 → 4
3

∫ ∞

0

dω
E(ω, β)
(2π)2

ε′′r2k
3
0d

(
1 +

1
2|εr2|2

)
. (41)

As may have been expected, this intensity is proportional
to the thickness d of the source layer; when that thick-
ness goes to zero, there are no sources left and the inten-
sity vanishes. It is also noteworthy that the emitted in-
tensity acquires substantial contributions from frequency
intervals within which the layer’s permittivity is close to
zero [19].

Besides the intensity, a further quantity of interest is
the energy density 〈u〉 of the electromagnetic field. In con-
trast to the radiative intensity, this quantity is sensitive
also to evanescent modes. Focusing on dielectrics facing
the vacuum, so that ε3(ω) = ε0, we then have to evaluate

〈u(z)〉 =
ε0

2
〈E2〉 +

µ0

2
〈H2〉. (42)

A calculation which largely parallels the one outlined in
Appendix A eventually leads to

〈u(z)〉 =
1

2(2πc)2

∫ ∞

0

dω ωE(ω, β)

×
∫ ∞

0

dλλe−2h′′
3 z

(
1 +

λ2 + |h3|2
k2
0

) (
T⊥ + T‖

)
h′

3

, (43)

where εr3 = 1 is understood when computing the trans-
mission coefficients (33) and (34).

5 Thermal radiation emitted by a thin
metallic film

5.1 Transmission coefficients for propagating
and evanescent modes

In order to clarify the physical significance of the preced-
ing formal results (32) and (43), we now express the key
quantities specifying the radiative properties of the dielec-
tric layer, the transmission coefficients (33) and (34), in
terms of the Fresnel amplitude reflection coefficients. For
radiation coming from a medium with permittivity ε1 and
going into one with permittivity ε2, these Fresnel coeffi-
cients are given by [23]

r12
⊥ =

h1 − h2

h1 + h2
(44)

for TE modes, and

r12
‖ =

h1
ε2
ε1

− h2

h1
ε2
ε1

+ h2
(45)

for TM modes. Introduction of these quantities necessi-
tates to distinguish explicitly between propagating and
evanescent modes. In all of this Section we assume ε3(ω) =
ε0, and thus study thermal radiation emitted into the
vacuum. Then propagating modes are characterized by
λ < k0 = ω/c, evanescent ones by λ ≥ k0. Defining four
functions

f =
(
1 − e−2h′′

2 d
)

+ |r12|2(e−2h′′
2 d − e−4h′′

2 d
)

g = 2e−2h′′
2 dIm

(
r12

(
e−2ih′

2d − 1
))

, (46)

where both the Fresnel coefficients r12 of the left interface
and, hence, also the functions f and g themselves carry
either the label “⊥” or “‖”, then rearranging the r.h.s.
of equations (33) and (34) with εr3 = 1, we find their
equivalent form

T pr =
1

|1 − r12r32 e2ih2d|2
[(

1 − |r32|2)f − 2 Im(r32)g
]

(47)
for propagating modes, whereas the corresponding expres-
sion for evanescent modes with γ =

√
λ2 − k2

0 is given by

T ev =
h′

3/γ

|1 − r12r32 e2ih2d|2
[
2 Im(r32)f +

(
1 − |r32|2)g

]
,

(48)
again for both types of polarization. In the case of thick
layers, h′′

2d � 1, these coefficients reduce to

T pr → 1 − |r32|2

T ev → 2
γ

Re(h3) Im(r32), (49)

so that one correctly re-obtains the familiar expressions
describing thermal radiation emitted by a bulk dielec-
tric [2,5–7].
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However, here we are interested in the radiative prop-
erties of dielectric films thinner than the skin depth of
the material under consideration, so that there are two
competing length scales. This case requires substantially
more care: provided |h′

2d| � 1 and h′′
2d � 1, the above

functions f and g reduce to

f → 2h′′
2d

(
1 + |r12|2)

g → −4h′
2d Re(r12) (50)

in linear approximation. For strongly evanescent modes
with λ � k0 one has h2 ≈ iλ, and hence h′′

2 � |h′
2|. In the

case of propagating modes, a similar hierarchy can be es-
tablished only if one specifies the film’s permittivity ε2(ω).
In the following discussion, we restrict ourselves to sim-
ple metals described by the Drude approach, resulting in
the permittivity (2), or in its approximation (3), provided
the Hagen-Rubens condition ωτ � 1 can be met for all
relevant frequencies.

Given such a Drude metal, the equality λ2+h2
2 = k2

0εr2

requires |h′
2| � h′′

2 for thermal frequencies. By means of
the approximation (50), one then finds |g| � f for suffi-
ciently thin films, so that contributions proportional to g
may be neglected. Hence, we have

T pr =
2h′′

2d

|1 − r12r32(1 − 2h′′
2d)|2

(
1 + |r12|2)(1 − |r32|2)

T ev =
2h′′

2d

|1 − r12r32(1 − 2h′′
2d)|2

2h′
3

γ

(
1 + |r12|2) Im(r32)

(51)

for thin metallic films. In terms of the dimensionless vari-
able ξ = 2h′′

2d, the dependence of both propagating and
evanescent thermal radiation on the film thickness is there-
fore determined by the function

F (ξ) =
ξ

|1 − a(1 − ξ)|2

=
ξ

[1 − a′(1 − ξ)]2 + a′′2(1 − ξ)2
, (52)

with a = r12r32.

5.2 Dependence of radiative intensity on film thickness

From here onwards we focus on metallic films in vacuum,
so that r12 = r32 ≡ r, and first estimate that film thick-
ness dW which results in maximum far-field heat radia-
tion due to propagating modes. We consider only modes
directed perpendicular to the interfaces, so that λ = 0,
and

r2 =
(

1 −√
εr

1 +
√

εr

)2

(53)

for both types of polarization. The Hagen-Rubens condi-
tion ωτ � 1 entails ε′′r � |ε′r|, or |εr| ≈ ε′′r � 1, implying
both |r′| ≈ 1 and |r′′| � 1. With a = (r′ + ir′′)2 one
deduces a′ ≈ r2 ≈ 1 and |a′′| � 1, so that it suffices to
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Fig. 2. Radiative intensity S emitted at temperature T =
300 K by a Drude metal with plasma frequency ωp = 2.1 ×
1016 s−1 and relaxation time τ = 2.3× 10−16 s, as appropriate
for Bismuth, as function of the film thickness d (in meters).
Vertical lines indicate the Woltersdorff thickness (56) and the
skin depth (1), respectively. Data are normalized with respect
to the intensity SBB emitted by a black body. Also indicated
is the bulk value (horizontal line) and the prediction based on
equation (41).

maximize, instead of the function F (ξ), its approximate
version

F pr(ξ) =
ξ

ξ2 + a′′2(1 − ξ)2
. (54)

Since |a′′| � 1, the maximum is located at

ξmax ≈ |a′′|, (55)

giving

dW ≈ 4 Im
√

εr

2h′′
2ε′′r

≈ 2c

ω2
pτ

(56)

for the optimum film thickness. This characteristic
length (56) coincides exactly with the so-called Wolters-
dorff thickness, which quantifies that thickness of a metal-
lic film which maximizes its absorption for frequencies ω
in the Hagen-Rubens regime [21,28,29]. Indeed, it has
been demonstrated experimentally that metal films ab-
sorb more infrared radiation if they are made thinner; for
most metals, maximum absorptance is obtained for films
less than 10−8 m thick [30]. In terms of the skin depth (1),
which takes the form

dskin =
c

ωp

√
2

ωτ
(57)

for metals in the infrared [21], and using k0 = ω/c, the
Woltersdorff thickness can be expressed as

dW = d2
skink0. (58)

The observation that a film of thickness dW also maxi-
mizes its emission reflects the fact that absorption bal-
ances emission in thermal equilibrium.

In Figure 2 we display numerical data for the radia-
tive intensity emitted at temperature T = 300 K by a
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Fig. 3. Radiative intensity S emitted at temperature T =
300 K by a Drude metal with ωp = 1.4 × 1016 s−1 and τ =
4.0×10−14 s, as corresponding to silver (full line), and another
such metal with ωp = 2.4× 1016 s−1 and τ = 0.8× 10−14 s, as
corresponding to aluminium (dotted). Vertical lines mark the
corresponding skin depths.

Drude metal with parameters ωp = 2.1 × 1016 s−1 and
τ = 2.3 × 10−16 s corresponding to Bismuth, as function
of the film thickness d; in all our numerical calculations
we employ the model permittivity (2) without the Hagen-
Rubens approximation. Although macroscopic electrody-
namics will presumably start to fail for thicknesses below
10−8 m, we also plot data for even smaller d, in order to
clearly bring out the asymptotic trend. This example con-
firms the picture drawn so far: the intensity emitted by
the film almost coincides with that emitted by the bulk
material when d exceeds the skin depth, but increases sub-
stantially when d is made smaller, reaching a maximum
which exceeds the bulk value by a factor of about 3.8
at a thickness predicted neatly by the Woltersdorff for-
mula (56), and then starting to decrease. However, the
regime of linear decrease described by equation (41) is
reached only for unrealistically small d. For metals with
more typical Drude parameters at room temperature, such
as silver (ωp = 1.4 × 1016 s−1 and τ = 4.0 × 10−14 s) or
aluminium (ωp = 2.4×1016 s−1 and τ = 0.8×10−14 s), the
maximum is shifted to even lower d, as witnessed by Fig-
ure 3, so that only radiative intensity increasing with de-
creasing film thickness might be observable in such cases.
It is noteworthy that the intensity generated by a thin film
can exceed the bulk limit by more than a factor of 10.

5.3 Near-field energy density for thin metal films

While the dependence of the radiative intensity on the film
thickness thus conforms to expectation, the dependence of
the “evanescent” energy density, at some distance z from
the film surface, on that thickness is more difficult to over-
see. This is related to the fact that for strongly evanescent
modes with λ � k0 both Fresnel coefficients (44) and (45)
differ strongly: one finds

r‖ ≈ εr − 1
εr + 1

(59)

for λ/k0 � 1, so that

Re(r2
‖) ≈ 1 − 4ω2

(ω2
pτ)2

Im(r2
‖) ≈

4ω

ω2
pτ

, (60)

but

r⊥ ≈ k2
0

λ2

εr − 1
4

, (61)

giving

Re(r2
⊥) ≈ − k4

0

16λ4

(
ω2

pτ

ω

)2

Im(r2
⊥) ≈ 2ωτ Re(r2

⊥) (62)

for λ/k0 � 1 in the Hagen-Rubens regime. Hence, for
strongly evanescent TM modes we have Re(r2

‖) ≈ 1 and
Im(r2

‖) � 1, which are precisely the propositions which
have enabled us to reduce the transmission function (52)
to the simpler form (54) for propagating modes. Hence,
we can immediately adapt the result obtained in equa-
tion (55): for evanescent TM modes with λ/k0 � 1, the
optimum film thickness maximizing the energy density
close to the film’s surface is given by

dev
‖ ≈

|Im(r2
‖)|

2h′′
2

, (63)

which implies

k0d
ev
‖ ≈ 2ω

ω2
pτ

k0

λ
(64)

within the Hagen-Rubens approximation (60), using h′′
2 ≈

λ. In Figure 4 we show a plot of the transmission func-
tion (52) for evanescent TM modes, obtained for Bismuth
parameters with ω kept fixed at the dominant thermal fre-
quency ωth for T = 300 K. Also indicated is the locus of
maximizing values in the λ-d-plane, as predicted by the
approximation (63); obviously this approximation works
quite well.

On the other hand, for evanescent TE modes the ap-
proximation (62) implies |a′′| � |a′|, so that the transmis-
sion function now is cast into the different form

F (ξ) ≈ ξ

[1 − a′(1 − ξ)]2
, (65)

with its maximum located at

ξmax =
∣∣∣∣a

′ − 1
a′

∣∣∣∣ . (66)

This predicts

dev
⊥ =

1
2h′′

2

∣∣∣∣Re(r2
⊥) − 1

Re(r2
⊥)

∣∣∣∣ (67)
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Fig. 4. Transmission function F (ξ) with ξ = 2h′′
2d, as defined

in equation (52), for evanescent TM modes, so that a = r2
‖. The

permittivity is given by the Drude formula (2) with parameters
corresponding to Bismuth, as in Figure 2; the frequency ω =
1014 s−1 is close to the dominant thermal frequency for T =
300 K. The locus of the maximizing argument ξmax is well
described by the approximate equation (63).
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Fig. 5. Transmission function F (ξ) with ξ = 2h′′
2d, as defined

in equation (52), for evanescent TE modes, so that a = r2
⊥. The

permittivity is given by the Drude formula (2) with parameters
corresponding to Bismuth, as in Figure 2; the frequency ω =
1014 s−1 is close to the dominant thermal frequency for T =
300 K. The locus of the maximizing argument ξmax is well
described by the approximate equation (67). Observe how the
scales here differ from those in Figure 4.

as the optimum thickness for strongly evanescent TE
modes, which simplifies to

k0d
ev
⊥ ≈ 8

(
ω

ω2
pτ

)2 (
λ

k0

)3

(68)

in the Hagen-Rubens regime. Again, we display in Figure 5
a plot of the function (52), and indicate the forecast of the
approximation (67) for maximum transmission. Compar-
ison of Figures 4 and 5 reveals entirely opposite trends
followed by both types of modes: whereas for TM modes
maximum transmission occurs for comparatively small λ,
unless k0d is excessively low, the maximizing λ grows with
k0d in the case of TE modes.

These opposite trends leave their imprints in the near-
field energy density. The energy density 〈uev〉(z) associ-
ated with evanescent modes of either type of polarization
at a distance z from the film’s surface is obtained by in-
tegrating the spectral density �ev(ω; d, z) characterizing a
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Fig. 6. Spectral density �‖(ω; d, z) for TM modes with fixed
frequency ω originating from a metallic film at temperature
T = 300 K in vacuum. The density is evaluated at a distance
z = 10−6 m from the film’s surface, as function of its thick-
ness d. The permittivity is given by the Drude formula (2)
with parameters for Bismuth. The frequencies considered are
ω = 1014 s−1, 5×1013 s−1, 1013 s−1, 5×1012 s−1, and 1012 s−1,
in the direction of the arrow. The film thickness resulting in
maximum density is given approximately by equation (71).

film of thickness d in vacuum,

〈uev〉(z) =
∫ ∞

0

dω �ev(ω; d, z). (69)

According to equation (43), we have

�ev(ω; d, z) =
1

(2π)2
E(ω, β)

ω

∫ ∞

k0

dλλ3e−2γz T ev

h′
3

, (70)

with T ev = T ev
⊥ or T ev = T ev

‖ as given by equation (48),

and γ =
√

λ2 − k2
0 . Since equation (51) states T ev =

F (ξ)(2h′
3/γ)

(
1 + |r|2)Im(r) for thin films, and since r‖

does not depend on λ for strongly evanescent modes, the
spectral density �ev

‖ (ω; d, z) associated with TM modes is
given essentially by the integrated product λ2e−2λzF (ξ).
Since the factor λ2e−2λz has a well-developed maximum
at λmax = 1/z, the spectral density is maximized if the
factor F (ξ) is adapted to that maximum. In view of equa-
tion (64), it follows that

dmax(ω, z) =
2ωz

ω2
pτ

(71)

is that film thickness which maximizes the spectral density
�ev
‖ (ω; d, z) at a given distance z. This reasoning is con-

firmed in Figure 6, which shows the full density �‖(ω; d, z),
including the contribution from propagating modes, for
z = 10−6 m and some representative frequencies ω, again
using the example of Bismuth. It is important to observe
that this density is dominated by low frequencies in the
limit of thin films; the maximizing thickness is well cap-
tured by the approximate equation (71). In marked con-
trast, the density �⊥(ω; d, z) effectuated by TE modes is
maximized at a thickness which becomes larger with de-
creasing frequency, as depicted in Figure 7.
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Fig. 7. Spectral density �⊥(ω;d, z) for TE modes with fixed
frequency ω originating from a metallic film at temperature
T = 300 K in vacuum. The density is evaluated at a distance
z = 10−6 m from the film’s surface, as function of its thick-
ness d. The permittivity is given by the Drude formula (2)
with parameters for Bismuth. The frequencies considered are
ω = 1014 s−1, 5×1013 s−1, 1013 s−1, 5×1012 s−1, and 1012 s−1,
in the direction of the arrow.

For calculating the near-field energy density 〈uev〉(z)
we scale all wavenumbers by z, obtaining dimensionless
quantities such as η ≡ λz. The resulting integral over η can
then be evaluated to zeroth order in the small parameter
k0z, provided the error thus committed falls into a range
of frequencies where it is suppressed by the Bose-Einstein
function E(ω, β). This requirement is satisfied if z � λth,
where

λth =
�c

kBT
(72)

is the characteristic thermal wavelength at temperature T .
With this proviso, we are led to

f =
(
1 − e−2ηd/z

)
+ |r|2(e−2ηd/z − e−4ηd/z

)
g = 0, (73)

resulting in the near-field approximation

〈uev〉(z) =
2
z3

×
∫ ∞

0

dω

ω

E(ω, β)
(2π)2

∫ ∞

0

dηη2e−2η Im(r)
|1 − r2 e−2ηd/z |2

·
[
1 − e−2ηd/z + |r|2(e−2ηd/z − e−4ηd/z

)]
.

(74)

When the film thickness is still large compared to the dis-
tance from the film, so that z � d, this formula simplifies
considerably and yields

〈uev〉(z) =
2
z3

∫ ∞

0

dω

ω

E(ω, β)
(2π)2

∫ ∞

0

dη η2e−2η Im(r),

(75)
which coincides with the expression for the energy den-
sity close to the surface of an infinitely thick layer, i.e.,
of a bulk material: for distances small compared to the
film thickness, the energy density contains no information

about that thickness. For metal films, the above result
reduces to

〈uev
⊥ 〉(z) ≈ 1

4z

1
(2πc)2

∫ ∞

0

dω ωE(ω, β)ε′′r

≈ 1
96

ω2
pτ

c2z

(kBT )2

�
(z � d) (76)

for TE modes, and to

〈uev
‖ 〉(z) ≈ 1

z3

∫ ∞

0

dω

ω

E(ω, β)
(2π)2

ε′′r
|εr + 1|2

≈ 1
24

1
ω2

pτz3

(kBT )2

�
(z � d) (77)

for TM modes. In both these cases, the first expression on
the respective r.h.s. is valid in general, whereas the sec-
ond one requires the Hagen-Rubens approximation. Thus,
for rather short distances z � d the total energy density
is dominated by the TM modes, exhibiting the familiar
z−3-divergence known from bulk materials [7,31].

In contrast, the other limiting case of distances large
compared to the film thickness, d � z � λth, gives rise
to a fairly counterintuitive feature. The general expres-
sion (74) then takes the form

〈uev〉(z) =
2
z3

∫ ∞

0

dω

ω

E(ω, β)
(2π)2

×
∫ ∞

0

dη η2e−2η Im(r)
|1 − r2 (1 − 2ηd/z)|2

· 2η
d

z

(
1 + |r|2). (78)

For TE modes, equation (61) guarantees that the denomi-
nator appearing here may be replaced by unity. This sim-
plification then gives

〈uev
⊥ 〉(z) ≈ 1

4z2

d

(2πc)2

∫ ∞

0

dω ωE(ω, β)ε′′r

≈ 1
96

ω2
pτd

c2z2

(kBT )2

�
(d � z � λth), (79)

where once again the second approximate equality hinges
on the Hagen-Rubens condition. Observe that this result
differs from the previous equation (76) for the reverse sit-
uation only by the factor d/z � 1, which appears reason-
able: The energy density caused by TE modes at a fixed
distance z � λth decreases when reducing the film thick-
ness.

However, the situation is more delicate when deal-
ing with TM modes, for which equation (60) enforces
Re(r2

‖) ≈ 1 and |Im(r2
‖)| � 1, so that the integrand in

equation (78) acquires a small denominator. We still may
write

|1 − r2
‖(1 − 2ηd/z)|2 ≈ |2ηd/z − i Im(r2

‖)|2, (80)

and now have to make a further distinction: keeping in
mind that the decisive η are on the order of unity, we may
set

|1 − r2
‖(1 − 2ηd/z)|2 ≈ (2ηd/z)2, (81)
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provided 2d/z � Im(r2
‖) for all relevant frequencies ω �

kBT/�. In view of equation (60), this requires

d

z
� 2kBT

�ω2
pτ

. (82)

It is interesting to observe that this condition validating
the approximation (81) can be cast into a particularly sug-
gestive form involving only the Woltersdorff thickness (56)
and the characteristic thermal wavelength (72):

d

z
� dW

λth
; (83)

in terms of the maximizing thickness (71), this means
nothing but

d � dmax(kBT/�, z). (84)

Given this, we find

〈uev
‖ 〉(z) ≈ 1

dz2

∫ ∞

0

dω

ω

E(ω, β)
(2π)2

ε′′r
|εr + 1|2

≈ 1
24

1
ω2

pτdz2

(kBT )2

�

(
dmax(kBT/�, z) � d � z

)
(85)

for films which are not too thin. This expression differs
from its counterpart (77) by the factor z/d � 1, which
is noteworthy: in the near-field regime, the energy density
caused by TM modes increases substantially when reduc-
ing the thickness of the film, despite the loss of source
volume. The fact that this feature emerges only for the
TM modes indicates that it is related to surface plasmon
polaritons. Indeed, when the film thickness d is sufficiently
small, the plasmons associated with the two surfaces cou-
ple, splitting into one resonance with a frequency that
converges to ωp for d → 0, and a second resonance with
a frequency that approaches zero [19,32]. This is exempli-
fied in Figure 8, where we plot the local density of states
D‖(ω, d, z), defined through the relation [6]

〈uev
‖ (z)〉 =

∫ ∞

0

dω E(ω, β)D‖(ω, d, z), (86)

for a distance of z = 10−8 m from Bismuth films of various
thicknesses. The increase of the energy density 〈uev

‖ 〉(z)
with decreasing film thickness found in equation (85) oc-
curs when the low-frequency surface plasmon polariton
comes into the range of the thermal frequencies.

Our findings are illustrated in Figure 9, which shows
the individual densities 〈u⊥(z)〉 and 〈u‖(z)〉 at a distance
z = 10−6 m from the surface of a Bismuth film, together
with their sum, again as functions of the film thickness d.
Whereas the density caused by TE modes decreases mono-
tonically with decreasing d, the one associated with TM
modes actually increases, and approaches a finite value for
d → 0. These different trends obeyed by the two types of
modes result in a non-monotonic dependence of the total
energy density at z on the thickness d.

 0

1 108

2 108

 0.5  1  1.5

LD
O

S

ω / ωp

1·10−9 m

5·10−9 m

1·10−8 m

5·10−7 m

Fig. 8. Local density of states D‖(ω, d, z) at distance z =
10−8 m above a Bismuth film of thickness d, specified by the
line style. For d = 5 × 10−7 m, one observes the usual surface
plasmon polariton resonance at ω = ωp/

√
2. For lower d, the

resonances associated with the two surfaces of the film couple
and split. The higher resonance approaches ωp for vanishing
film thickness, whereas the lower one approaches ω = 0. This
latter, low-frequency resonance causes the universal behavior
expressed in equation (93).
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Fig. 9. Total energy density 〈u(z)〉 = 〈u⊥(z)〉 + 〈u‖(z)〉, to-
gether with the individual contributions, at a distance z =
10−6 m from the surface of a Drude metal film with thickness d.
The Drude parameters correspond to Bismuth; the tempera-
ture is T = 300 K. Data are normalized with respect to the
energy density uBB of a black body of the same temperature.

The limiting case of very thin films is reached when
d/z � dW/λth, or

d � dmax(kBT/�, z). (87)

This limit may be hard to realize in practice, and fall out-
side the regime of validity of macroscopic electrodynamics
for most materials, but it is nonetheless of conceptual in-
terest. It necessitates to approximate the denominator in
the expression (78) in the form

∣∣∣∣1 − r2
‖

(
1 − 2η

d

z

)∣∣∣∣
2

≈
(

2η
d

z

)2

+
(

4ω

ω2
pτ

)2

, (88)

with none of the two terms on the r.h.s. being negligible
against the other for all relevant frequencies. Inserting,



248 The European Physical Journal B

one is confronted with

〈uev
‖ 〉(z) ≈ 2

z3

∫ ∞

0

dω

ω

E(ω, β)
(2π)2

×
∫ ∞

0

dη η2e−2η Im(r‖)
|2ηd/z − i Im(r2

‖)|2
4ηd/z

≈ 2
z2d

2
ω2

pτ

∫ ∞

0

dω
E(ω, β)
(2π)2

∫ ∞

0

dηη3 e−2η

η2+
(

2ωz
ω2

pτd

)2 .

(89)

Rescaling the η-integral according to
∫ ∞

0

dη
η3e−2η

η2 + a2
= a2

∫ ∞

0

dy
y3e−2ay

y2 + 1
, (90)

we arrive at

〈uev
‖ 〉(z) ≈ 1

π2z2ω2
pτd

∫ ∞

0

dω E(ω, β)

×
(

2ωz

ω2
pτd

)2 ∫ ∞

0

dy
y3 exp

(
−2y 2ωz

ω2
pτd

)
y2 + 1

. (91)

Clearly, here the ω-integral is dominated by low frequen-
cies in the small-d-limit, as discussed before in the con-
text of Figure 6; consequently, we are entitled to replace
E(ω, β) by kBT . Then interchanging the order of integra-
tion, and using

∫ ∞

0

dω

(
2ωz

ω2
pτd

)2

exp
(
−2y

2ωz

ω2
pτd

)
=

ω2
pτd

z

1
(2y)3

, (92)

finally results in

〈uev
‖ 〉(z) ≈ kBT

π2z3

1
23

∫ ∞

0

dy

y2 + 1

=
kBT

16πz3

(
d � dmax(kBT/�, z)

)
. (93)

Remarkably, the energy density associated with evanes-
cent TM modes not only remains finite when approaching
the (formal) limit of zero thickness, but it also becomes
independent of the metal’s parameters. This universal fea-
ture stems from the fact that the low-frequency surface
plasmon polariton resonance depicted in Figure 8 con-
verges to zero frequency for all Drude materials. Nonethe-
less, the width of this resonance depends on the relaxation
time τ , so that the scale dmax below which the univer-
sal behavior appears is proportional to 1/τ . As a conse-
quence, metals such as gold and Bismuth, which possess
nearly identical plasma frequencies but substantially dif-
ferent relaxation times, reveal the above universality for
rather different film thicknesses. As will be discussed in
reference [27], the rise of the evanescent energy density
expressed by equations (85) and (93) also occurs with thin
metal films coating a polar dielectric, but is lost when a
thin metal film covers another metal.
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Fig. 10. Energy density 〈u⊥(z)〉 associated with TE modes
for Drude metal films with Bismuth parameters at T = 300 K,
as functions of the distance z from the film. Film thicknesses
are d = 10−7 m (dashed-dotted), 7 × 10−9 m (dotted), and
10−10 m (full line). For fixed z in the near-field regime, this
density 〈u⊥(z)〉 decreases with decreasing thickness. Straight
lines correspond to the approximate results (76) and (79) for
the thickest and thinnest film, respectively. Data are normal-
ized with respect to the energy density uBB of a black body of
the same temperature.
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Fig. 11. Energy density 〈u‖(z)〉 associated with TM modes
for Drude metal films with Bismuth parameters at T = 300 K,
as functions of the distance z from the film. Line symbols are
as in Figure 10. For fixed z, the density 〈u‖(z)〉 increases with
decreasing thickness. Straight lines correspond to the approx-
imate results (77) and (85) for the thickest and thinnest film,
respectively.

Figure 10 shows a doubly logarithmic plot of the de-
pendence of the energy density 〈u⊥(z)〉 associated with
TE modes on the distance z from the film, summing up
evanescent and propagating contributions. Again we take
Drude parameters for Bismuth at temperature T = 300 K,
and consider films of thickness d = 10−7 m and 7×10−9 m,
together with an excessively thin model example with
d = 10−10 m. In the first two cases, one clearly recognizes
the crossover from the z−1-behavior predicted for z � d
by the approximation (76) to the z−2-dependence implied
by equation (79) for larger distances, d � z � λth. As
indicated by the arrow, 〈u⊥(z)〉 decreases at fixed z when
d is reduced.

Figure 11 displays the corresponding plot for TM
modes. Here the data for d = 10−7 m and d = 7 ×
10−9 m exhibit the change of slope from −3, as deduced
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Fig. 12. Total energy density 〈u(z)〉 = 〈u⊥(z)〉 + 〈u‖(z)〉, for
the same example cases as studied in Figures 10 and 11. Ob-
serve that the energy density varies non-monotonically with
film thickness for distances around z ≈ 10−7 m.

from equation (77) for z � d, to −2, as required by
equation (85) for d � z � λth. Moreover, for the model
case d = 10−10 m one observes another crossover from
that slope −2 appearing when dmax(kBT/�, z) � d to the
universal z−3-behavior found in equation (93) in the op-
posite limit.

Finally, we display in Figure 12 the total energy densi-
ties for these examples. As a consequence of the opposing
trends obeyed by the TE and TM modes, there is a well-
developed range of distances around z ≈ 10−7 m where
the total density varies non-monotonically with the film
thickness.

6 Conclusions

A theoretical treatment of heat radiation and thermal near
fields generated by thin dielectric slabs within the frame-
work of macroscopic fluctuational electrodynamics hinges
on two basic ingredients. On the one hand, Maxwell’s
equations have to be solved with the boundary conditions
imposed by the slab geometry; on the other, the dielec-
tric permittivity ε(ω) for the slab’s material is required.
We have addressed the first problem by constructing the
dyadic Green’s functions for the slab in Section 3, and
stated general expressions for both the intensity of the
heat radiation and its energy density, valid for any pre-
scribed permittivity ε(ω), in Section 4.

The restriction to metallic films, with dielectric re-
sponse solely due to free particle-like electron motion,
leads to an intricate competition of length scales. Besides
the geometrical thickness d of such a film, and the skin
depth (1), the Woltersdorff thickness dW defined in equa-
tion (56) and the characteristic thermal wavelength λth

come into play. As a consequence, the dependence of the
thermal near-field energy density on the distance z from
the film’s surface is not characterized by a single exponent,
but different exponents dominate in different regimes. In
particular, we have shown that for d/z � dW/λth the
energy density is dominated by the universal contribu-
tion (93) brought about by TM modes. Our conclusions

are based on the Drude model (2) for the permittivity, re-
garding the plasma frequency ωp and the relaxation time τ
as fixed. This does not hold exactly for electrical transport
in ultrathin metallic films, since the resistivity of such a
film increases with decreasing thickness [33], but we ex-
pect the main features of our discussion to persist at least
qualitatively.

With a view towards laboratory experiments, one
might be interested not in metallic films in vacuum, but
rather in thin metal coatings on a planar surface of another
material. This case has been anticipated in our general
formulae (47) and (48), where the Fresnel reflection coef-
ficients for the left interface differ from those for the right
one, but one still has to account for the bulk contribu-
tion [26,27]. Qualitatively, however, the Fabry-Perot-like
effect brought about by thin metal coatings bears interest-
ing possibilities of manipulating the intensity of thermal
radiation, that is, the amount of energy transported per
time from a hot body into the vacuum.

The insights obtained in this work are especially perti-
nent with regard to recent developments in scanning ther-
mal microscopy [34,35]. It has been argued that the tip
of a thermal microscope operating in ultrahigh vacuum is
sensitive to the near-field energy density above the sam-
ple; experiments along this direction are presently under-
way [36]. Near-field signatures offered by thin films, or by
bulk materials coated with films of varying, exactly speci-
fied thickness even down to that of atomic monolayers, and
their actual observation in a suitable experiment could be
of value for developing scanning thermal microscopy into
a quantitative tool for materials science.

While we have formally extrapolated the realm of
macroscopic electrodynamics down to even unrealistically
small scales, it goes without saying that at some scale
deviations from the macroscopic description will show up;
such deviations now have come within the scope of modern
experimental set-ups [36]. In addition, one has to expect
important corrections due to effects of non-local optical
response [31,37]. The pursuit of the question at precisely
what length scale, and in precisely what manner, these de-
viations start to manifest themselves is a quite important
task in nanoscale thermal engineering. In this quest, the
present study may serve as a reference.

S.-A.B. acknowledges support from the Studienstiftung des
deutschen Volkes. We thank U. Fleischmann-Wischnath,
O. Huth, A. Kittel, A. Knübel, J. Parisi, and F. Rüting for
helpful discussions and criticism.

Appendix A: Calculation of the Poynting
vector

In this Appendix we provide technical details required
for the derivation of the expression (32) for the inten-
sity of heat radiation emitted by a dielectric layer. Com-
puting the magnetic Green’s function �H

IV according to
equation (14) from the electric Green’s function (26), and
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defining the convenient symbols

aij
⊥ := hi + hj

aij
‖ := hi

εj

εi
+ hj

bij
⊥ := hi − hj

bij
‖ := hi

εj

εi
− hj , (A.1)

one starts from the product of the two dyadics and inte-
grates, obtaining

∫
d3r′�E

IV ·�H
IV

t
=

i
(2π)2ωµ0

×
∫ ∞

0

dλ

∫ ∞

0

dλ′
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n,n′=0

(2 − δn,0)(2 − δn′,0)
λλ′
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|D⊥|2
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⊥ |2e2h′′
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⊥ e−2ih′
2dI−+

M

−b12
⊥ a12
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2 dI++
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]
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|k2|2

|D‖|2k3
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·
[
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‖ |2e2h′′
2 dI−−
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‖ b12
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2dI−+

N

−b12
‖ a12

‖ e2ih′
2dI+−

N + |b12
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2 dI++
N

]}
. (A.2)

Here we have introduced the source integrals

I−−
M :=

∫
d3r′ M′(−h2) · M′

(−h2)

= ∆λ,λ′
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1
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2
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, (A.3)

where the integration extends over the dielectric layer la-
beled “2”, that is, over the slab −d ≤ z ≤ 0 occupied by
the sources (cf. Fig. 1); the symbol ∆λ,λ′

n,n′ is given by

∆λ,λ′
n,n′ :=

1 + δn,0

2
δn,n′ πλ δ(λ − λ′). (A.4)

Likewise, one has
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. (A.5)

The emergence of the 8 different source integrals (A.3)
and (A.5) is a characteristic complication brought about
by the finite thickness of the slab; it can be seen as a con-
sequence of multiple reflections inside the slab. Inserting
the right hand sides of these integrals, the longish expres-
sion (A.2) is reduced to

∫
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IV ·�H
IV

t
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i
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}
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In the next step, we evaluate the vector product appearing
in the definition of the Poynting vector (31). Because of
translational invariance in the planes orthogonal to the
z-axis, it suffices to consider ρ = 0 only. With the help of

εzβγ

(
M(h3) ⊗ N(h3)

)
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and
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and exploiting the elementary but important relations

λ2 + |h2|2 =
Re(h2εr2) k2

0

h′
2

λ2 − |h2|2 =
Im(h2εr2) k2

0

h′′
2

, (A.9)

where k0 = ω/c, one is led to

εzβγ
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with the symbols A⊥, A‖, B⊥, and B‖ as specified in equa-
tions (35) and (36). Inserting this expression (A.10) into
equation (31), adding the complex conjugate, and utilizing
the identity

ε′′2(ω) =
2h′

2h
′′
2

µ0ω2
(A.11)

for the imaginary part of the permittivity, one finally ends
up with the result stated in equation (32).
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